https://doi.org/10.1140/epjds/s13688-023-00380-y
Regular Article
A computational analysis of accessibility, readability, and explainability of figures in open access publications
1
School of Information Studies, Syracuse University, Syracuse, USA
2
Amazon, Inc., New York, USA
3
Department of Computer Science, University of Colorado at Boulder, Boulder, USA
Received:
28
May
2022
Accepted:
14
February
2023
Published online:
2
March
2023
Figures are an essential part of scientific communication. Yet little is understood about how accessible (e.g., color-blind safe), readable (e.g., good contrast), and explainable (e.g., contain captions and legends) they are. We develop computational techniques to measure these features and analyze a large sample of them from open access publications. Our method combines computer and human vision research principles, achieving high accuracy in detecting problems. In our sample, we estimated that around 20.6% of publications contain either accessibility, readability, or explainability issues (around 2% of all figures contain accessibility issues, 3% of diagnostic figures contain readability issues, and 23% of line charts contain explainability issues). We release our analysis as a dataset and methods for further examination by the scientific community.
Key words: Accessibility / Open Access / Computer Vision
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.