https://doi.org/10.1140/epjds/s13688-022-00327-9
Regular Article
CORAL: COde RepresentAtion learning with weakly-supervised transformers for analyzing data analysis
Paul G. Allen School of Computer Science and Engineering, Seattle, USA
Received:
9
December
2020
Accepted:
1
March
2022
Published online:
18
March
2022
Large scale analysis of source code, and in particular scientific source code, holds the promise of better understanding the data science process, identifying analytical best practices, and providing insights to the builders of scientific toolkits. However, large corpora have remained unanalyzed in depth, as descriptive labels are absent and require expert domain knowledge to generate. We propose a novel weakly supervised transformer-based architecture for computing joint representations of code from both abstract syntax trees and surrounding natural language comments. We then evaluate the model on a new classification task for labeling computational notebook cells as stages in the data analysis process from data import to wrangling, exploration, modeling, and evaluation. We show that our model, leveraging only easily-available weak supervision, achieves a 38% increase in accuracy over expert-supplied heuristics and outperforms a suite of baselines. Our model enables us to examine a set of 118,000 Jupyter Notebooks to uncover common data analysis patterns. Focusing on notebooks with relationships to academic articles, we conduct the largest study of scientific code to date and find that notebooks which devote an higher fraction of code to the typically labor-intensive process of wrangling data in expectation exhibit decreased citation counts for corresponding papers. We also show significant differences between academic and non-academic notebooks, including that academic notebooks devote substantially more code to wrangling and exploring data, and less on modeling.
Key words: Data science / Meta science / Representation learning
Ge Zhang and Mike A. Merrill contributed equally to this work.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.