2016 Impact factor 2.787

News / Highlights / Colloquium

EPJ Data Science Highlight - Gaining historical and international relations insights from social media

As more and more people get their news from social media platforms, these become hosts to vast amounts of information on human behavior in relation to real-time events around the world. In a study published in EPJ Data Science, Vanessa Peña-Araya and team successfully match geopolitical interactions obtained from Twitter activity with real-world historical international relations.

(Guest post by Vanessa Peña-Araya, Mauricio Quezada, Denis Parra and Barbara Poblete, originally published on the SpringerOpen blog

Online social media platforms, like Twitter, Sina Weibo, or Facebook, have become very popular in recent years. They are primarily used to share personal experiences and to keep in touch with friends. Nevertheless, many users turn to these platforms as reliable sources to find real-time information about world events, such as the Ukrainian Crisis or recent natural disasters. In particular, Twitter has become one of the prefered sources on the Web for breaking news updates

Read more...

EPJ Data Science Highlight - Out in the city with Pokémon Go

In the summer of 2016 Pokémon Go took the world by storm. Millions of people across the globe descended on their streets, searching their neighbourhoods for monsters. Much has been reported on the health benefits that players gained from using the app; now, research published in EPJ Data Science explores how Pokémon Go was able to change the pulse of a city, encouraging people to use areas in ways they didn't previously.

(Guest post by Eduardo Graells-Garrido, originally published on SpringerOpen blog

The success of Pokémon Go is undeniable. People of all ages and everywhere in the world were using their mobile phones to go around their cities trying to catch the next pocket monster. But “PoGo” had an interesting, perhaps unintended, side-effect: not only did the game let you catch Pokémon in an augmented reality (AR) environment, it also motivated players to walk more and meet new people.

Read more...

EPJ Data Science Highlight - A fresh look into the dynamics of scientific collaborations

In EPJ Data Science, Alice Patania and colleagues evaluate the collaborative interactions between scientists from a new perspective.

The structure of scientific collaborations has been the object of intense study both for its importance for innovation and scientific advancement, and as a model system for social group coordination and formation thanks to the availability of authorship data.

Over the last few years, complex networks approaches to this problem have yielded important insights and shaped our understanding of scientific communities. In our recently published article in EPJ Data Science, we propose to complement the picture provided by network tools with that coming from topological data analysis, which has at its core the notion of multi-agent interactions.

Read more...

EPJ Data Science Highlight - The power of novel data to understand political sentiment

©Wikimedia commons

In the aftermath of recent (and surprising) election results, it became evident that poll results do not tell the whole story about voters' intentions. In a study published in EPJ Data Science, researchers from the University of Leeds have mapped voter sentiment in all United Kingdom constituencies based on data from electronic petitions, achieving a good match with the results of the 2017 General Election.

(Guest post by Stephen Clark, Nik Lomax and Michelle A. Morris, originally published on SpringerOpen blog)

The EU referendum and 2017 General Election are two recent examples where polling companies failed to accurately predict the outcome of voter sentiment. Most predicted that the UK would vote to remain in the European Union and that the Conservative party would increase their parliamentary majority. When neither of these outcomes transpired there was much critique of the data sources and methods used to assess voter sentiment and opinion.

Read more...

EPJ Data Science Highlight - Instagram photos reveal predictive markers of depression

Right photograph has higher Hue (bluer), lower Saturation (grayer), and lower Brightness (darker) than left photograph. Instagram photos posted by depressed individuals had HSV values shifted towards those in the right photograph, compared with photos posted by healthy individuals.

Research published in EPJ Data Science finds that early-warning signs of depression can be detected in Instagram posts before a clinical diagnosis is made. Here to tell us how the image filter, colour and the number of faces in the post can all be predictors are authors of the study, Andrew G. Reece and Christopher M. Danforth.

Guest post by Andrew G. Reece and Christopher M. Danforth, originally published on SpringerOpen blog

When you’re feeling sad, the people around you probably know it. Moody playlists, slumped shoulders, drawn-out sighs – there are many ways we signal to the rest of the world when we’re having a down day. It’s not all that much of a stretch, then, to imagine your Instagram posts might look happier when you’re feeling happy, and sadder when you’re feeling sad.

Read more...

EPJ Data Science Video – A new method for giving voting advice: How researchers can turn voter “Hmm’s” into HMMs

Indecision is quickly becoming a thing of the past. Whether it’s content, cuisine, or companionship we crave, technology seems to know just what to serve up. But what about life’s bigger decisions? The ones that probably should give us pause? A recent study suggests that there might soon be an app for those too, namely for voting.

Applying Hidden Markov Models to Voting Advice Applications, Marilena Agathokleous and Nicolas Tsapatsoulis (2016), EPJ Data Science, 5:34, DOI: 10.1140/epjds/s13688-016-0095-z

EPJ Data Science Highlight - Estimating unemployment rates from Twitter user routines

Pixabay, CC0 Public Domain.
Pixabay, CC0 Public Domain

The buzz of busy commuters, as well as the lack of it, leave behind digital footprints that are rich in information about all aspects of people's lives. In EPJ Data Science, Eszter Bokányi and team analyze 63 million tweets originating all over the US for a period of 10 months, and find links between unemployment rates and and the users' Twitter activity.

Read more...

EPJ Data Science Highlight - Social media trending: real or manufactured?

Pixabay, CC0 Public Domain.
Pixabay, CC0 Public Domain

The era of "fake news" is upon us. Navigating social media is a constant exercise of judgement, but data science can be a helpful to distinguish real from fabricated trending topics. In EPJ Data Science, Emilio Ferrara and team set out to determine from very early on whether information is being organically or artificially disseminated on social media.

Read more...

EPJ Data Science Highlight - Are your tweets feeling well? Opinion and emotion in tweets change when you get sick

©Max Pixel (edited)
©Max Pixel (edited)

Can we tell if a person is physically ill by the way they tweet? On a recently published article in the journal EPJ Data Science, researchers at the Pacific Northwest National Laboratory uncover links between the health of users and the emotional tone of their social media output.

Guest post by by Svitlana Volkova, originally published on SpringerOpen blog

Any doctor or nurse knows good public health begins with prevention. Whether it’s a severe strain of the flu or mental illness, identifying the need for help early can save lives. Social media could be the game-changing solution public health workers have been looking for. Whereas traditional data from clinics may take weeks to collect, social media streams in real time. In other words, public health workers could monitor social media like a heartbeat, and take action before people visit a doctor.

Read more...

EPJ Data Science Highlight - Are your friends happier than you?

Photo from Pixabay, CC0 public domain.
Photo from Pixabay, CC0 public domain.

In an era of fleeting but constant contact with extended online communities, it is common to find yourself wondering: are your friends happier/more popular than you? To put these feelings to the test, scientists have sifted through the timelines of thousands of Twitter users, to understand the ways in which social networks affect how we feel and relate to one another.

Guest post by Johan Bollen

Social media platforms have garnered billions of users, possibly because they satisfy a strong human need for feeling connected. However, do they actually contribute to our social happiness?

In EPJ Data Science we attempt to shed some light on this issue from the perspective of network science.

Read more...

Editors-in-Chief
Frank Schweitzer and Alessandro Vespignani