2023 Impact factor 3.0

News / Highlights / Colloquium

EPJ Data Science Highlight - Investigating gender equality in urban cycling

An overview of the gender gap in recreational cycling across cities included in the study according to Strava. Credit: A. Battison et al. (2023)

New research looks at why cycling has a low uptake among women in urban areas

Over recent years not only has cycling proved itself to be an outdoor activity with tremendous health benefits, but it has also presented itself as a useful tool in the quest to find an environmentally friendly method of urban transportation.

Despite the increasing popularity of cycling, many countries still have a negligible uptake in the pursuit and this is even more pronounced when considering how many women engage in cycling. To this day, a mostly unexplained gender gap exists in cycling.

A new paper in EPJ Data Science by the University of Turin Department of Computer Science researcher Alice Battiston and her co-authors attempts to understand the determinants behind the gender gap in cycling on a large scale.

Read more...

EPJ Data Science appoints Dr Yelena Mejova as co-Editor-in-Chief

Dr Yelena Mejova

EPJ is pleased to announce that Dr Yelena Mejova has been appointed as a co-Editor-in-Chief for EPJ Data Science, effective January 2023. She will be responsible for overseeing the editorial process of the journal, working closely with Dr Ingmar Weber, who continues to serve as co-Editor-in-Chief.

Yelena Mejova is a Senior Research Scientist at the ISI Foundation in Turin, Italy. Specializing in social media analysis and mining, her work concerns the quantification of health and wellbeing signals in social media, as well as tracking of social phenomena, including politics and news consumption. In 2022, she co-chaired International AAAI Conference on Web and Social Media (ICWSM) and the Web & Society track at The Web Conference. As a part of the CRT Foundation's Lagrange Project for Data Science and Social Impact, she is also working with the humanitarian sector including the World Food Program, OCHA, and IMMAP to develop NLP and modeling tools to aid in humanitarian data management and forecasting.

EPJ Data Science Highlight - A data-driven approach for assessing biking safety in cities

A snapshot of an interactive map of results obtained from the authors' model for the city of Pittsburgh, Pennsylvania, USA. Low-risk locations are colored green, while risky locations are colored red.

The bicycle is arguably the most sustainable and eco-friendly mode of transport but biking safety remains a prime concern, especially in cities. In their work recently published in EPJ Data Science Konstantinos Pelechrinis and his co-authors propose a model which provides interpretable findings for practical change.

Continue reading the blog post here.

EPJ Data Science appoints Dr. Ingmar Weber as co-Editor-in-Chief

Dr. Ingmar Weber

EPJ is pleased to announce that Dr Ingmar Weber of Qatar Computing Research Institute (QCRI) has been appointed as a co-Editor-in-Chief for EPJ Data Science, effective January 2021. He will be responsible for overseeing the editorial process of the journal, working closely with Prof Markus Strohmaier, who continues to serve as co-Editor-in-Chief. Ingmar Weber is the Research Director for Social Computing at QCRI where his research focuses on using social media and other non-traditional data to study phenomena such as international migration, digital gender gaps, and wealth inequalities. Of particular interest is how such data can be used to provide better statistics on global development and how, in turn, such statistics can be used for better interventions and policy decisions. This work is done in close collaboration with different United Nations entities and NGOs. Ingmar Weber currently serves as an ACM Distinguished Speaker and is a Senior Member of AAAI, IEEE, and ACM. He has been a member of the Editorial Board for EPJ Data Science since 2018.

EPJ Data Science Highlight - Women’s disadvantage: because of who they are, or what they do?

Photo by Christina Morillo from Pexels

Women often find themselves strongly disadvantaged in the field of software development, in particular when it comes to open source. In a study recently published in EPJ Data Science, Orsolya Vasarhelyi and Balazs argue that this disadvantage stems from gendered behavior rather than categorical discrimination: women are at a disadvantage because of what they do, rather than because of who they are.

Continue reading the guest post by Orsolya Vasarhelyi and Balazs Vedres on the SpringerOpen blog.

EPJ Data Science Highlight - What ‘Twitch Plays Pokémon’ tells us about crowd behavior

Photo by Soumil Kumar from Pexels

No one would deny that the behavior of the people we know, and even of our own, can radically change depending on those who surround us. The problem of understanding how being in a group changes the way we behave has been subject of intense research in psychology since the beginning of the past century. The beginning of the XXI century gave rise to a new kind of group: the online crowds. Nowadays, it is no longer necessary to have all individuals in the same place in order to have a ‘crowd’. What is more, it is possible to connect together thousands, even millions, of individuals in a matter of minutes.

In the work recently published in EPJ Data Science, we study one such occasion that gathered millions of users: Twitch Plays Pokémon.

Continue reading the guest post by Alberto Aleta on the SpringerOpen blog.

EPJ Data Science Highlight - What can we learn from billions of food purchases derived from fidelity cards?

© Map & Visualization: Tobias Kauer

For your health, what you eat is more important than what you earn.

This result comes from our latest project “Poor but Healthy”, which was published in EPJ Data Science, and comes with a @tobi_vierzwo’s stunningly “beautiful map of London” that author Daniele Quercia invites everyone to explore.

By combining 1.6B food item purchases with 1.1B medical prescriptions for the entire city of London for one year, researchers discovered that, to predict health outcomes, socio-economic conditions matter less than what previous research has shown: despite being of lower-income, certain areas are healthy, and that is because of what their residents eat.

Read the full blog post on Medium.

EPJ Data Science Highlight - How news outlets target audiences

© Photo by Kaboompics .com from Pexels

The mass media is one of the social forces with the most active transformative power. However, news reach people unequally. Many factors shape the distribution and influence of news media coverage. Some of these factors are the geographic reach of newspapers (national versus regional newspapers), the direct targeting of specific sectors of the population, and/or the political ideology of the media outlet itself.

In a recent article in EPJ Data Science, Erick Elejalde, from the L3S Research Centre in Hannover, Germany, explains how their work helps to identify whether or not an outlet’s coverage deviates from the purely geographic influence to a more sophisticated behavior involving the weight of political and socioeconomic interests.

Read the post on the SpringerOpen blog.

EPJ Data Science Highlight - Offline biases in online platforms

Online booking platforms such as Airbnb or Uber present themselves as and strive to be inclusive, but there is an increasing amount of both anecdotal and scientific evidence of discriminatory behavior among their users. In a study published in EPJ Data Science, researchers at University College London set out to evaluate interaction patterns within Airbnb, in an effort to understand the extent to which offline human biases influence affects their users.

Read the guest post by Giacomo Livan, Licia Capra, Weihua Li and Victoria Koh on the SpringerOpen blog

EPJ Data Science Highlight - Using deep learning to “see” inside homes across the world

Copyright: Pixabay License

How much does someone's living room tell about how they live? Peeking into another person's life might be just part of natural human curiosity, but the answer to this question may provide insights in a wide range of aspects of human behavior. A new study published in EPJ Data Science uses the power of machine learning to explore patterns of home decors—and what they could tell about their owners—in popular accommodation website Airbnb.

See guest post by Clio Andris and Xi Liu originally published in the SpringerOpen blog

Editors-in-Chief
Y. Mejova and I. Weber