https://doi.org/10.1140/epjds/s13688-025-00548-8
Research
Scaling hermeneutics: a guide to qualitative coding with LLMs for reflexive content analysis
Department of Communication, University of California, Davis, California, Davis, USA
Received:
8
February
2024
Accepted:
31
March
2025
Published online:
2
April
2025
Qualitative coding, or content analysis, is more than just labeling text: it is a reflexive interpretive practice that shapes research questions, refines theoretical insights, and illuminates subtle social dynamics. As large language models (LLMs) become increasingly adept at nuanced language tasks, questions arise about whether—and how—they can assist in large-scale coding without eroding the interpretive depth that distinguishes qualitative analysis from traditional machine learning and other quantitative approaches to natural language processing. In this paper, we present a hybrid approach that preserves hermeneutic value while incorporating LLMs to scale the application of codes to large data sets that are impractical for manual coding. Our workflow retains the traditional cycle of codebook development and refinement, adding an iterative step to adapt definitions for machine comprehension, before ultimately replacing manual with automated text categorization. We demonstrate how to rewrite code descriptions for LLM-interpretation, as well as how structured prompts and prompting the model to explain its coding decisions (chain-of-thought) can substantially improve fidelity. Empirically, our case study of socio-historical codes highlights the promise of frontier AI language models to reliably interpret paragraph-long passages representative of a humanistic study. Throughout, we emphasize ethical and practical considerations, preserving space for critical reflection, and the ongoing need for human researchers’ interpretive leadership. These strategies can guide both traditional and computational scholars aiming to harness automation effectively and responsibly—maintaining the creative, reflexive rigor of qualitative coding while capitalizing on the efficiency afforded by LLMs.
Key words: LLM / Text categorization / Content analysis / Qualitative coding / Digital humanities
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.