https://doi.org/10.1140/epjds/s13688-023-00410-9
Regular Article
A language framework for modeling social media account behavior
1
Observatory on Social Media, Indiana University, Bloomington, Indiana, USA
2
William & Mary, Williamsburg, Virginia, USA
Received:
3
November
2022
Accepted:
2
August
2023
Published online:
23
August
2023
Malicious actors exploit social media to inflate stock prices, sway elections, spread misinformation, and sow discord. To these ends, they employ tactics that include the use of inauthentic accounts and campaigns. Methods to detect these abuses currently rely on features specifically designed to target suspicious behaviors. However, the effectiveness of these methods decays as malicious behaviors evolve. To address this challenge, we propose a language framework for modeling social media account behaviors. Words in this framework, called BLOC, consist of symbols drawn from distinct alphabets representing user actions and content. Languages from the framework are highly flexible and can be applied to model a broad spectrum of legitimate and suspicious online behaviors without extensive fine-tuning. Using BLOC to represent the behaviors of Twitter accounts, we achieve performance comparable to or better than state-of-the-art methods in the detection of social bots and coordinated inauthentic behavior.
Key words: Social media / Encoding online behavior / Bot detection / Coordination detection
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.