https://doi.org/10.1140/epjds/s13688-023-00398-2
Regular Article
Leveraging WiFi network logs to infer student collocation and its relationship with academic performance
1
Georgia Institute of Technology, North Ave NW, Atlanta, USA
2
Northeastern University, 360 Huntington Ave, Boston, USA
Received:
14
May
2021
Accepted:
9
June
2023
Published online:
7
July
2023
A comprehensive understanding of collocated social interactions can help campuses and organizations better support their community. Universities could determine new ways to conduct classes and design programs by studying how students have collocated in the past. However, this needs data that describe large groups over a long period. Harnessing user devices to infer collocation, while tempting, is challenged by privacy concerns, power consumption, and maintenance issues. Alternatively, embedding new sensors across the entire campus is expensive. Instead, we investigate an easily accessible data source that can retroactively depict multiple users on campus over a semester, a managed WiFi network. Despite the coarse approximations of collocation provided by WiFi network logs, we demonstrate that leveraging such data can express meaningful outcomes of collocated social interaction. Since a known outcome of collocating with peers is improved performance, we inspected if automatically–inferred collocation behaviors can indicate the individual performance of project group members on a campus. We studied 163 students (in 54 project groups) over 14 weeks. After describing how we determine collocation with the WiFi logs, we present a study to analyze how collocation within groups relates to a student’s final score. We found that modeling collocation behaviors showed a significant correlation (Pearson’s) with performance (better than models of peer feedback or individual behaviors). These findings emphasize that it is feasible and valuable to characterize collocated social interactions with archived WiFi network logs. We conclude the paper with a discussion of applications for repurposing WiFi logs to describe collocation, along with privacy considerations, and directions for future work.
Key words: Wireless sensor networks / Infrastructure sensing / Collocation / Social interactions / Student behavior / Academic performance
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.