https://doi.org/10.1140/epjds/s13688-022-00338-6
Regular Article
Mapping state-sponsored information operations with multi-view modularity clustering
CASOS Center, Institute for Software Research, Carnegie Mellon University, 5000 Forbes Ave, 15213, Pittsburgh, PA, USA
Received:
14
June
2021
Accepted:
1
April
2022
Published online:
18
April
2022
This paper presents a new computational framework for mapping state-sponsored information operations into distinct strategic units. Utilizing a novel method called multi-view modularity clustering (MVMC), we identify groups of accounts engaged in distinct narrative and network information maneuvers. We then present an analytical pipeline to holistically determine their coordinated and complementary roles within the broader digital campaign. Applying our proposed methodology to disclosed Chinese state-sponsored accounts on Twitter, we discover an overarching operation to protect and manage Chinese international reputation by attacking individual adversaries (Guo Wengui) and collective threats (Hong Kong protestors), while also projecting national strength during global crisis (the COVID-19 pandemic). Psycholinguistic tools quantify variation in narrative maneuvers employing hateful and negative language against critics in contrast to communitarian and positive language to bolster national solidarity. Network analytics further distinguish how groups of accounts used network maneuvers to act as balanced operators, organized masqueraders, and egalitarian echo-chambers. Collectively, this work breaks methodological ground on the interdisciplinary application of unsupervised and multi-view methods for characterizing not just digital campaigns in particular, but also coordinated activity more generally. Moreover, our findings contribute substantive empirical insights around how state-sponsored information operations combine narrative and network maneuvers to achieve interlocking strategic objectives. This bears both theoretical and policy implications for platform regulation and understanding the evolving geopolitical significance of cyberspace.
Key words: COVID-19 pandemic / Information operations / Multi-view modularity clustering / State-sponsored disinformation / Social cyber-security / Unsupervised machine learning
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.