https://doi.org/10.1140/epjds/s13688-021-00305-7
Regular Article
Predictive modeling to study lifestyle politics with Facebook likes
1
Department of Engineering Management, University of Antwerp, Prinsstraat 13, 2000, Antwerp, Belgium
2
Department of Political Science, University of Antwerp, Sint Jacobsmarkt 2-4, 2000, Antwerp, Belgium
Received:
16
March
2021
Accepted:
15
September
2021
Published online:
2
October
2021
“Lifestyle politics” suggests that political and ideological opinions are strongly connected to our consumption choices, music and food taste, cultural preferences, and other aspects of our daily lives. With the growing political polarization this idea has become all the more relevant to a wide range of social scientists. Empirical research in this domain, however, is confronted with an impractical challenge; this type of detailed information on people’s lifestyle is very difficult to operationalize, and extremely time consuming and costly to query in a survey. A potential valuable alternative data source to capture these values and lifestyle choices is social media data. In this study, we explore the value of Facebook “like” data to complement traditional survey data to study lifestyle politics. We collect a unique dataset of Facebook likes and survey data of more than 6500 participants in Belgium, a fragmented multi-party system. Based on both types of data, we infer the political and ideological preference of our respondents. The results indicate that non-political Facebook likes are indicative of political preference and are useful to describe voters in terms of common interests, cultural preferences, and lifestyle features. This shows that social media data can be a valuable complement to traditional survey data to study lifestyle politics.
Key words: Data science / Predictive modeling / Political preference / Facebook likes
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.