https://doi.org/10.1140/epjds/s13688-021-00292-9
Regular Article
State-space models reveal bursty movement behaviour of dance event visitors
1
Informatics Institute, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
2
Institute for Advanced Study, 1012 GC, Amsterdam, The Netherlands
Received:
16
November
2020
Accepted:
22
June
2021
Published online:
6
July
2021
Pedestrian movements during large crowded events naturally consist of different modes of movement behaviour. Despite its importance for understanding crowd dynamics, intermittent movement behaviour is an aspect missing in the existing crowd behaviour literature. Here we analyse movement data generated from nearly 600 Wi-Fi sensors during large entertainment events in the Johan Cruijff ArenA football stadium in Amsterdam. We use the state-space modeling framework to investigate intermittent motion patterns. Movement models from the field of movement ecology are used to analyse individual pedestrian movement. Joint estimation of multiple movement tracks allows us to investigate statistical properties of measured movement metrics. We show that behavioural switching is not independent of external events, and the probability of being in one of the behavioural states changes over time. In addition, we show that the distribution of waiting times deviates from the exponential and is best fit by a heavy-tailed distribution. The heavy-tailed waiting times are indicative of bursty movement dynamics, which are here for the first time shown to characterise pedestrian movements in dense crowds. Bursty crowd behaviour has important implications for various diffusion-related processes, such as the spreading of infectious diseases.
Key words: Human mobility / Wi-Fi data / State-space models / Movement ecology / Bursty dynamics
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.