
Eur. Phys. J. B (2012) 85: 358
DOI: 10.1140/epjb/e2012-30481-7

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Statistical characterization of an ensemble of functional neural
networks

B.B.M. Silva1, J.G.V. Miranda1, G. Corso2, M. Copelli3, N. Vasconcelos4,5, S. Ribeiro5, and R.F.S. Andrade1,a

1 Instituto de F́ısica, Universidade Federal da Bahia, 40210-340 Salvador, Brazil
2 Departamento de Biof́ısica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte,

59072-970 Natal, Brazil
3 Departamento de F́ısica, Universidade Federal de Pernambuco, 50670-901 Recife, Brazil
4 Departamento de Sistemas e Computação, Universidade Federal de Campina Grande, 58.429-900 Campina Grande, Brazil
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Abstract. This work uses a complex network approach to analyze temporal sequences of electrophysiolog-
ical signals of brain activity from freely behaving rats. A network node represents a neuron and a network
link is included between a pair of nodes whenever their firing rates are correlated. The framework of time
varying graph (TVG) is used to deal with a very large number (>30 000) of time dependent networks,
which are set up by taking into account correlations between neuron firing rates in a moving time lag
window of suitable width. Statistical distributions for the following network measures are obtained: size of
the largest connected cluster, number of edges, average node degree, and average minimal path. We find
that the number of networks with highly correlated activity in distinct brain areas has a fat-tailed dis-
tribution, irrespective of the behavioral state of the animal. This contrasts with short-tailed distributions
for surrogates obtained by shuffling the original data, and reflects the fact that neurons in the neocor-
tex and hippocampus often act in precise temporal coordination. Our results also suggest that functional
neuronal networks at the millimeter scale undergo statistically nontrivial rearrangements over time, thus
delimitating an empirical constraint for models of brain activity.

1 Introduction

In the last decade, the complex network framework has
been applied to investigate a large number of biological
and social systems [1–3]. In this kind of investigation it is
necessary to identify basic constituents of the original sys-
tems and the meaningful relationships among them. These
elements will be mapped, respectively, onto network nodes
(or vertices) and network edges (or links). It has been
shown that many distinct measures used to characterize
such networks also provide valuable quantitative insights
about the way the constituents of the original system are
related among themselves [4–6].

The anatomical structure of neurons and dendrites
turns it quite easy to conceive the brain as a network [7].
However, the use of network theory to measure empirical
properties of the neural system is quite recent [8]. Stud-
ies in this direction have indeed revealed that the brain
as a network of synaptically connected neurons has small-
world properties [9], which can be expressed at different
spatial scales [10].

Other studies have changed the focus from form
to function, using an alternative and complementary
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approach to construct, characterize, and model functional
neuronal networks (FNN). A FNN is usually obtained
following a few steps: (1) define the network nodes as
the units from which electrophysiological signals can be
recorded (e.g. voxels in functional magnetic resonance
imaging (fMRI), or electrodes in electroencephalography
(EEG) or magneto-encephalography (MEG) recordings);
(2) estimate a measure of functional association between
the nodes (e.g. linear correlation, or mutual informa-
tion); (3) generate an adjacency matrix based on some
threshold criterion for the chosen measure [8]. This ba-
sic sequence was used to construct a FNN of the human
brain [11], where each node corresponds to a small voxel
from which the blood oxygen level-dependent (BOLD) sig-
nal was measured in a typical fMRI experiment. A network
edge was introduced between the nodes i and j whenever
the linear correlation among the BOLD signals from the
corresponding voxels exceeded a suitable threshold value,
yielding a power law distribution of node degree [12]. Sim-
ilar distributions were found among neuron activity in
in-vitro investigations, where the links are established by
synchronization in calcium metabolism of cells [13]. The-
oretical modeling has aimed at reproducing the typical
experimental features in firing activity [14–17], but the
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overall long term goal is far from being concluded: to un-
derstand the relationship between form and function, i.e.
how does structural connectivity influences functional con-
nectivity, and vice-versa.

The main task of this work is to construct and char-
acterize FNN’s related to neurophysiologic dynamics. We
use extracellular records obtained from multi-electrode ar-
rays (MEAs) of a few square millimeters chronically im-
planted in the brains of rats. The subjects were recorded
for a few hours, during which they were freely behav-
ing, exposed to novel objects, and spontaneously tra-
versed their sleep-wake cycle. The use of MEA records
for the FNN construction requires a suitable framework
to bridge the difference between the typical time scales of
firing spikes and neurophysiologic information processing.

The network nodes are identified as the measured neu-
rons, while links among pairs of neurons are established
requiring a lower bound in the correlation between in their
firing rate. To deal with large record sets, we evaluate pair-
wise correlation between firing rates of neurons inside a
moving window of duration W (on the order of one or two
seconds), what leads to a very large number of networks
(>30 000), each one of them reflecting the brain operating
conditions within a restricted time interval. A statistical
characterization of the constructed FNN’s is performed on
selected measures of the ensemble of networks. The data
is analyzed separately for each behavioral state (waking,
slow-wave sleep and rapid-eye-movement sleep).

The data used in this study is constrained to the brain
areas probed by the electrodes, which differs from the
whole-brain fMRI approach [11]. To maximize the number
of nodes, we employ single-unit spiking activity. Since our
focus is on robust collective properties of networks of neu-
rons, however, we base the functional association among
neurons on the correlation between their mean firing rates.
The restriction in the number of distinct neurons used to
set up the network data is compensated by the large num-
ber of analyzed networks using the long time records. Ever
since the pioneering work of Sherrington and Adrian [18]
early in the 20th century, spike rates have been a staple in
neurophysiologic analysis, being extensively investigated
with the aim of understanding, among other issues, the
dynamics of sensory and motor processes. In summary,
our approach differs from previously studied functional
brain networks in that we depart from a small set of large
networks to a much larger ensemble of small-size networks.

The rest of this work is organized as follows: in Sec-
tion 2 we describe the methodology used to obtain the
data and discuss data interpretation and proper time
scales. Section 3 describes the FNN setup, whereas Sec-
tion 4 presents our results on the statistics of the ensemble
of FNN’s. We discuss our concluding remarks in Section 5.

2 Methodology – data acquisition
and electrophysiology

The primary data we work with consists of experimen-
tal records of extracellular action potentials (spikes) de-
tected by multi-electrode arrays in surgically implanted

rats [19–21]. We used single wire electrodes for extracellu-
lar recordings of action potentials. This technique is very
different from intracellular recordings in the sense that
the electrodes are not in contact with the cells, but rather
placed in the extracellular space. Multichannel digital sig-
nal processors are used to distinguish and store the digi-
tal waveforms. Despite the distance between electrode tip
and cell body, the technique allows for the recording of
single units because the different waveforms of the puta-
tive neurons can be discriminated based on voltage and
time differences [19,22]. The tools used for the reliable
separation of units include the analysis of inter-spike in-
tervals, as well as a principal component analysis of the
waveforms [19,22]. Extracellular recordings performed in
this way have been shown to be very stable, lasting many
weeks and even months [19–22]. Discriminable neuronal
units are typically obtained from 70−80% of micro-wires
implanted. Typically, 2−4 units can be isolated from each
of these micro-wires; on average, 2.3 units neuronal can
be isolated by each micro-wire [19,22].

For each experimental data set, we denote by N the
number of recorded neurons and by T the total recording
time. We have used data produced by three implanted
rats identified as GE4, GE5, and GE6, for which the
respective values of (N, T (s)) are (45, 8001), (51, 7952),
and (57, 8149). The original electrophysiological data set
indicates the instants of time in which each neuron fired.
Based on this information, it is possible to produce the
neuron firing rate in any chosen interval, which becomes
the actual input of our network analysis.

During the recording time, the animals remained in
complete darkness but were concomitantly videotaped us-
ing infrared cameras, so that it is possible to associate the
spike firing rates to their behavioral state. We consider
the subjects could assume three distinct behavioral states:
awake (WK), slow wave sleep (SWS), and rapid eye move-
ment (REM). A detailed description of the three states
and the method used to discriminate SWS from REM
states based on state-specific features of local field po-
tentials is found in reference [23].

The electrodes were implanted in three distinct areas
(hippocampus, somatosensory cortex, primary visual cor-
tex) leading to the following number of registered neu-
rons: (HP, S1, V 1) = (4, 13, 28)−GE4, (13, 16, 22)−GE5,
and (22, 28, 7)− GE6 [21]. In the current study, however,
we disregard the anatomic localization of the neurons and
treat the neuron population as a uniform ensemble. This
approach is justified as we assume a spreading information
hypothesis [24].

The spike firing process has a typical time scale (δ <
10 ms), while the inter spike interval Δ is very rarely less
than 5 ms [25]. Thus, δ is too short to account for the
slower processes of psychophysical and neurophysiologic
nature that are likely to be related to any typical behav-
ior observed in mammals. For instance, time intervals of
the order of 100 ms roughly match the visual-motor delay
that defines reaction time and represents a lower bound
for meaningful behavior [26,27]. This information has been
corroborated by the successful use of the 250 ms bin to
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analyze neuronal ensemble activity of behavioral signifi-
cance using linear correlations [20] as well as binary clas-
sifier including neural networks for pattern analysis [28].
Indeed, the classification quality achieved by binary clas-
sifiers is maximum and stable between 45−275 ms [29].
Therefore, we consider these values as guidelines in a
procedure to coarse-grain the original information and
construct FNN’s at a larger scale. More specifically, our
framework inquires whether correlations among the simul-
taneous firing rate of individual neurons are able to pro-
duce collective patterns in the brain that might be asso-
ciated to the neurophysiologic dynamics.

It is worthy to comment that some recent studies
proposed a model based approach to approximate the
functional connectivity at neuronal level [30,31]. However,
there is still a lack of studies using this approach in neu-
ronal data acquired from MEA’s recording in a free be-
having protocol, as used in this current paper. Finally, we
would like to call the attention to the recent findings that
strong firing correlations among neuronal pairs are typi-
cally concurrent with weak and yet significant correlations
within the same neuronal population [32–34]. Despite such
coexistence, these works have shown that the collective be-
havior of spiking neurons can be quantitatively described
by maximum entropy models based on pair-wise correla-
tions, which do not take into account higher-order corre-
lations. These models predict that neuronal networks are
dominated by strong pair-wise interactions, and that ac-
curate reduced models can be built by dropping the weak
interactions. This agrees well with the approach taken in
our manuscript, which privileges strong correlations.

3 Network construction and time varying
graph

For a given data set, each neuron i ∈ [1, N ], is associated
with a spike time series xi ∈ [0, T ]. The elements of xi

are the firing times, i.e., the instants of time in which a
spike in the activity of neuron i was recorded. The coarse-
graining procedure starts by assigning the spikes in xi

into time intervals of size b ∈ [100 ms, 1000 ms]. Next we
count, for each neuron i, the number of spikes inside each
box, obtaining the bin series hi = {hi(1), hi(2), . . .}, where
hi(q) ≥ 0 corresponds to the number of spikes fired by
the ith neuron per b seconds in the qth time interval. This
procedure maps the xi series into a firing rate series hi,
used to construct a correlation matrix among neuron firing
rates ωi = hi/b. To this purpose, we consider a moving
window of width W , encompassing NW = W/b bins, and
evaluate the Pearson correlation coefficient ρi,j between
neurons i and j over a time interval W as

ρi,j(τ̄ ) =

∑τ+NW

q=τ (hi(q) − h̄i)(hj(q) − h̄j)
√∑τ+NW

q=τ (hi(q) − h̄i)2
∑τ+NW

q′=τ (hj(q′) − h̄j)2
.

(1)
τ̄ denotes the starting time of the window of duration W in
which ρ is computed, and τ = τ̄ /b. h(q) contains the bins
inside the qth window, while h̄ is the respective average.

Fig. 1. (Color online) Stepwise illustration of the methodol-
ogy: (a) recorded neuron firing spikes as function of time. The
primary input is used to calculate the firing rate for each neu-
ron in a bin of width b. (b) Sequence of firing rates. Red squares
highlight the firing rates evaluated in (a), while the gray win-
dow W is used to compute Pearson’s correlation (see Eq. (1)).
(c) Resulting values of correlation matrix projected into four
gray tones. Only pairs of strongly correlated neurons are set
to 1. Such array is interpreted as the adjacency matrix of the
network in panel (d).

We use the concept of time-varying graph
(TVG) [35–37] to complete the construction of the
time dependent FNN set. In the conventional graph the-
ory, a graph is defined as G(V , E) where V and E ⊆ V ×V
represent, respectively, the set of vertices (or nodes) and
the set of edges ei,j with i, j ∈ V . A TVG is defined as
G(V , E , Υ ), where Υ defines which edges are available at
each value of the discrete time variable τ = τ̄/b. Actually,
it is a generalization of a G(V, E) graph with the inclusion
of the edge presence function Υ : E × Γ → {0, 1}, where
Γ ⊆ N is a discrete time interval set called the system
lifetime. According to this formalism, a FNN set is
regarded as a single G(V , E , Υ ) graph. To be consistent
with our goal, Υ must depend on a minimum amount ρ of
functional relationship among the neurons to be reached
by the correlation coefficients ρi,j(τ). Therefore, we
formally define

Υ (e, τ) =
{

1, if ρi,j(τ̄ ) ≥ ρ
0, if ρi,j(τ̄ ) < ρ

, ∀(e, τ) ∈ (E , Γ ). (2)

For the sake of definiteness we will call the obtained
structure as a functional neuronal time varying graph
(FNTVG). The main steps of our construction procedure
are indicated in Figure 1. In Figure 2, we show the three
subsequent elements of a FNTVG. In the next section,
we use the following network measures to characterize all
elements of a FNTVG during the graph lifetime Γ : the
number of nodes connected to at least one node Nn(τ),
the number of nodes in the largest component Nc(τ), the
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a) c)b)

HP

S1

V1

Fig. 2. (Color online) Three elements (435, 436, and 437) of
the GE5 FNTVG showing how connections depend on instant
firing rates. Nodes have been grouped according to their loca-
tion in the brain: white ↔ hippocampus; blue (dark grey) ↔
somatosensory cortex; green (light grey) ↔ primary visual cor-
tex. Besides this broad criterion, their relative positions have
no correlation with their actual location inside the brain. Hubs
defined according to equation (4) (yellow squares) also change
with time.

total number of edges in the network E(τ), the diame-
ter D(τ), the node degree ki(τ) and the node average mean
path 	i(τ). The last two local measures can be worked out
to provide both time-dependent network averages 〈z(τ)〉,
as well as time average of individual nodes zi, where z
indicates k and 	.

With such a bona fide FNTVG definition, we discuss
important issues to implement the proposed framework.
The first one is related to the proper time scales. With
a typical firing time δ(=10) ms, we get the maximal al-
lowed firing rate ∼ b/δ. In our data, only in exceptional
cases a neuron fires 4 or 5 times in a b = 100 ms win-
dow. Therefore, the correlations among firing rates be-
comes very poor for such small values b ∼ δ. In fact,
we still obtain an almost binary statistics. In the oppo-
site limit, if we increase the value of b by a factor 10,
the firing counts are 10 times as larger, but the typical
scale of 250 ms for individual actions is surmounted by a
factor 4. Therefore, the selected optimal value corresponds
to (W (ms), b(ms), NW ) = (2500, 250, 10). To illustrate
the effects of other parameter choices we also report, in
the next section, results for (W, b, NW ) = (1000, 100, 10),
and (2500, 100, 25).

Moving windows depend both on the width as on
the starting point, which we express as function of NW

and Ns, the distance between starting bins of two con-
secutive windows. For overlapping windows (Ns < NW ),
the same information is used repeatedly (as in a moving
average), reducing statistical fluctuations. The cardinality
of the set Γ is expressed as function of Ns, b, and NW , as
|Γ | = (T/b − NW + 1)/Ns. In this work, we restrict our
analyzes to Ns = 1, so that |Γ | ∼ 32 000 for all rats when
(W, b, NW ) = (2500, 250, 10).

Let us observe that a neuron i may not fire in the qth
bin and remain in a silent state expressed by hi(q) = 0. In
the FNN construction, the presence of a large number of
contiguous bins with hi = 0 may lead to a distorted cor-
relation matrix in equation (1). Indeed, highly connected
networks due to hi = 0 states would dominate the statis-
tics, providing an undesired bias (for the ensemble of neu-
rophysiologic states) that stems only from silence. There
are several arguments pro and contra treating differently
silence from active states in neuroscience. Although we

will not argue herein against any of them, we advise that
the developed formalism seems to be tailored for neglect-
ing the silent states. This becomes clear when we com-
pare results where correlations were obtained under two
different conditions: (a) imposing a very strict demand for
correlations by demanding that more than 80% of the NW

values of hi are non zero; (b) raising no objections to the
presence of hi = 0 bins.

If hi(q) = 0 states are neglected, the effective num-
ber of elements in equation (1) is often smaller than NW ,
i.e. NW (τ) < NW . The measure of linear correlation pro-
vided by ρi,j(τ) depends on the number of elements in-
side the considered window but, for large values of NW ,
small fluctuations in the actual values of NW (τ) do not
have much influence on the value of ρi,j . In such cases,
the simplest strategy is to choose a constant value ρ = R
in equation (1), so that the additional step is to tune R
to adequately extract relevant information from the data.
Functional networks based on fMRI data [11] have used
this strategy.

In the current study, not only N is much less than the
number of fMRI voxels, but also NW is restricted to the
interval [10, 25]. Therefore it is wise adopt a significance
level S of the correlation test that properly takes into ac-
count the effective sample size NW (τ). For the sake of
definitiveness, let us consider the classical statistical in-
ference test for correlation [38] to set a hypothesis test for
the correlation and a consequent significance level for the
answer. The null hypothesis of the statistical test is: there
is no correlation between the variables, or ρi,j = 0. Follow-
ing the standard inferential statistics [38] the quantity ρi,j

is associated with a t value of a Student distribution by
the equation:

t = ρi,j

√
(NW − 2)/(1 − ρ2

i,j). (3)

Using this Student distribution, with (NW − 2) degrees of
freedom, we find the t-value of the test that can be in-
terpreted as the probability that the results observed in a
study could have occurred by chance if the null hypothesis
was true. Let us denote the chosen significance level by S.
Therefore, for t < S and a given NW (τ) we accept the
null hypothesis. On the other hand, for t ≥ S, we have no
reason to conclude for an absence of correlation.

We compared our results with those obtained within
the same framework by randomized surrogates originated
by the following procedure: (1) each neuron i keeps its
own set of firing rates; (2) for each value of i, the time
order of firing rates hi(q) was independently shuffled by
sequentially choosing |Γ | random pairs (q1, q2) and switch-
ing (hi(q1), hi(q2)) → (hi(q2), hi(q1)). This destroys any
possible correlation among all neurons at a very low level.

Finally, we tested the legitimacy of using Pearson cor-
relations in the current approach by evaluating Q(r), the
distribution of residues r obtained from the linear fits of
our data. We have found that Q(r) can be well approxi-
mated by a normal Gaussian law.
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Fig. 3. (Color online) Values of E, Nc, 〈k〉, and 〈�〉 as function
of τ for networks generated with data set GE6. Below the τ
axis, a gray (color) bar indicates the behavioral state (WK
(dark gray, red), SWS(white, green), and REM(black, blue))
of the animal.

4 Results

The elements of a FNTVG are such that V depends on
the original data set GE∗. Since Ns = 1 always, E and Υ
depend on W, b, and ρ̄. Very large values of ρ̄ set too re-
strictive conditions in equation (2), so that the FNTVG
elements consist of a just a few connected nodes. By con-
trast, small values of ρ̄ do not distinguish the firing rate
correlation, so that we just connect neurons that happen
to be firing at the same time. Figure 3 shows selected net-
work measures obtained from GE6 data, with the optimal
parameter values (W, b, NW ) = (2500, 250, 10). We have
discarded silent nodes and the value of ρ̄ is expressed by
the significance level S = 0.99. The horizontal color bar
indicates the animal activity as function of τ .

The largest values attained by E, Nc, 〈k〉, and 〈	〉
are 166, 30, 12, and 5. The behavior of 〈k〉 and Nc makes is
it possible to identify periods where a large number of neu-
rons are firing in a synchronized way (large 〈k〉 and Nc),
as well as time intervals where most of them are at rest
(low 〈k〉 and Nc). The association of synchronized firing
rates with the values of 	 is not straightforward. 	 van-
ishes identically when no edge is present, and converges
to 1 for a completely connected network. It goes through a
maximum when the number of edges lies between the two
limit cases, but this extreme does not depend only on E,
but on the network topology and the way the edges are
distributed among the nodes.

The corresponding probability distributions Π(x) of
the FNTVG measures are presented in Figure 4. There
we can observe, in a more convenient way, that the occur-
rence of these measures depends in a relative weak way on
the behavioral state of the animal. The plots of Π(Nc),
Π(〈k〉), and Π(〈	〉) confirm that the corresponding mea-
sures are distributed over relatively short intervals with
a characteristic scale. The same is not observed for the
distribution of edges Π(E), where the presence of long
tails can be observed for all three distinct states. Thus,
the FNTVG set {E} appears as the adequate record that
might reveal fingerprints of a critical or a strong correlated
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Fig. 4. (Color online) Probability distributions Π(E), Π(Nc),
Π(〈k〉), and Π(〈�〉) for the GE6 data set. The results distin-
guish each of the assigned behavioral states in Figure 3: WK
(blue triangles), SWS (red squares), and REM (black circles).
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Fig. 5. (Color online) Distribution Π(E) for the GE6 FNTVG
with different values of S. In (a), squares and circles corre-
spond to S = 0.95 and 0.99, respectively. Hollow and solid
symbols indicate the results for the original data and shuffled
surrogates. The mono-log scale reveals exponential tails for the
shuffled data only. In (b), triangles and diamonds correspond
to S = 0.990 and 0.999. Best fits to descending tails (solid and
dashed lines) indicate power laws with exponents γ = 2.87
and 2.73, respectively.

behavior of the entire system. We investigated in detail
the functional dependence of Π(E) during the Γ lifetime,
taking into account the dependence of Π(E) on the sig-
nificance level S. We remind that Π(E) is proportional to
the number of occurrences where E pairs of neurons fire
in a correlated way, i.e., how often in a freely behaving
situation the animal requires its neurons to act together.

In Figure 5 we show, for different threshold values of S,
the distributions Π(E) for the original and randomized
data. Given the non random nature of the investigated
data, it is fair to expect that Π(E) shows clear deviations
from Poisson behavior are expected.
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Panel (a) shows, in log-linear scale, the behavior Π(E)
when S = 0.95 and 0.99. For the shuffled surrogates,
Π(E) is characterized by exponential tails, while non-
exponential fat tails characterize the distribution obtained
by the actual data. This behavior becomes more evident
when S increases, tails clearly deviate from an exponen-
tial decay even for the relatively small value S = 0.95.
An overall effect produced by more restrictive control
(larger S) is to shift Π(E) to the left, for the average num-
ber of edges in the FNTVG becomes smaller. However, a
proper tuning of the admitted level of Pearson correlation
changes not only the average number of edges, but also
reveals critical effects produced by neuron interaction.

Panel (b) illustrates, in log-log scale, the typical
changes in the tails of Π(E) for larger values of S. We use
the same value S = 0.99 (as in panel (a)) and S = 0.999.
Visual inspection suggests that both tails might be con-
sistent with power-law behavior within a range of E �
one order of magnitude. We used a least square fitting
procedure to adjust the data points in the distribution
tail to a power law function Π(E) = AE−γ . The results
indicate that γ decreases as the significance S increases.
This leads to the conclusion that, even if the tails do not
strictly follow power laws, the decay of Π(E) slows down
when S increases. We observe that S = 0.999 stands as
an upper bound. Still more restrictive conditions wash out
important effects of actual interaction mechanism from
the FNTVG, leading to an incomplete picture of the neu-
ron system.

A quantitative assessment to the question whether
Π(E) follows a power law was conducted by a non-
parametric Kolmogorov-Smirnov (KS) test. This approach
measures the likelihood that a given data distribution fol-
lows a chosen functional dependence. It has great impor-
tance in those cases where the range of variation of the
experimental data is relatively small [39,40]. This is pre-
cisely the situation we face in this work. The largest num-
ber of links in a network with 57 nodes is ∼1600, but
the restriction imposed by large values of S reduces this
number to 166 when S = 0.99, and 67 when S = 0.999.

When S = 0.999, we obtained a positive result of
the KS test (score 0.16) when we compared the actual val-
ues of E with those of an artificially produced power law
distribution with exponent γ = 2.7 in the interval [5, 67].
This range of E, slightly larger than a decade, corresponds
to the region of the distribution tail. The KS results re-
main valid for γ in the interval [2.6, 2.8]. We also obtained
positive results for S = 0.99. The test scored 0.055 for the
comparison of Π(E) with a power law distribution with
γ = 2.8 in the interval [13, 150]. When S ≤ 0.95, the same
procedure leads to negative outcomes of the KS test. To
check the alternative behavior, we also performed the KS
test in the opposite situation, i.e., we tested the tails
of Π(E) for exponential decay A exp(−βE). The results
were negative for any value S ∈ [0.9, 0.99] and suitable
range of β values.

We performed further statistical tests and explored
other parameter values to check our procedure. The re-
sults confirm that the FNTVG formalism is a suitable tool
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Fig. 6. (Color online) (a) Distribution Π(E) for the FNTVG
with the same data set and parameter values used in Figure 5,
but with hi = 0 bins. The symbols indicate the same values
of S as in Figure 5. New hi = 0 distributions are shifted to the
right, but the tails decay with almost the same S dependent
exponent γ. (b) Distribution Π(E) for the same data set in Fig-
ure 5 and S = 0.99. Squares and circles correspond to different
choices of (W,b, NW ) = (1000, 100, 10) and (2500, 100, 25).

for the analysis of neurophysiologic processes. This is il-
lustrated by a discussion of the behavior of Π(E), as it
provides a clear signature of the FNTVG properties. We
report results obtained when S = 0.99, since the larger av-
erage number of edges reduces the fluctuation magnitude.

To test the robustness of the FNTVG framework with
respect to bootstrapping procedure, we considered ran-
dom assemblies of elements of the original set. We gen-
erated several samples with different number NB, for in-
stance NB = 30 000, 25 000, and 20 000. We repeated the
procedure 5000 times for each such value of NB, and no-
ticed that the values of γ change in a narrow interval of
amplitude <0.05 around the value obtained for the com-
plete set.

In Figure 6a we show the main features of Π(E) with
the presence of hi = 0 bins for S = 0.950, 0.990, and 0.999,
which can be directly compared to those shown in Fig-
ure 5. It is possible to note that: (i) the average number
of edges increases, shifting Π(E) the right; (ii) the relative
number of FNTVG elements with small number of links
decreases, so that the new Π(E) shows a much sharper
decrease in the region of small number of edges; (iii) the
exponent of power-law tail of the new Π(E) remains very
close to the previous one. Therefore, for the purpose of
characterizing the power-law behavior, the presence of
hi = 0 bins is almost irrelevant. This suggests further that
the power-law tail is actually intrinsic to the system, not
an artifact induced by the framework. Note also that the
effect described in (ii) becomes more relevant when S is
small. Finally, for the largest value S = 0.999, the distri-
butions with hi = 0 bins become very close to that without
hi = 0 bins for all values of E, with exception of a shift
to the right. This indicates that, though abundant, silent
bins are not sufficient to change the features of the large
pair-wise correlations under very restrictive conditions.
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This is the main reason why we indicated that neglecting
hi = 0 bins in the devised framework is a more adequate
choice. From now on we always discard hi = 0 bins.

Figure 6b illustrates the behavior of Π(E) for the
choices (W, b, NW ) = (1000, 100, 10) and (2500, 100, 25).
The first choice weakens the average correlation and in-
creases the number of FNTVG elements with a very small
number of nodes and edges (1−10), where the complex
network measures provide no useful statistical treatment.
We note a strong increase in the value of γ. In the second
choice, the effect of reducing b is compensated by con-
comitantly increasing NW = 25, keeping W = 2500 ms
as in the optimal parameter values. The number of small
networks lies between the two previous quoted conditions.
Π(E) is shifted to the left, but the exponent of the dis-
tribution tail suffers only minor changes. This indicates
that, although the considered measurements are localized
in time, the patterns they produce via FNTVG are re-
vealed only by coarse grained procedures.

Let us discuss some properties related of other FNTVG
measures. In particular, the node degree distribution
p(k, τ) could identify a possible scale-free network topol-
ogy associated to a critical state [11]. As shown in Figure 3,
the values of ki are quite small, so that it becomes difficult
to identify any power law. Therefore, we develop another
strategy to identify the presence of hubs and the existence
of a hierarchical structure in the FNTVG.

To this purpose we used the value of ki to classify the
position of each neuron according to the firing activity for
each value of τ . Then we count the number of occurrences
where each node i has a particular high value ki, which
measures its tendency to play the role of a hub. For each
value of τ , we identified hubs as nodes i satisfying the
condition

ki(τ) > 〈k(τ)〉 + 2σ(τ), (4)

where σ(τ) indicates the corresponding standard deviation
of node degree.

We compared the observed results with those of a cor-
responding random network. Diversely from the usual ap-
proach, our FNTVG is not like a large network to which
we can fit a Poisson curve to check for the randomness of
the distribution, but contains thousands of elements with
a number of connected vertices that varies from 2 to 56.
Therefore we change our approach: we count the num-
ber of hubs in each FNTVG element using equation (4)
and relate this result with the expected number of hubs
of a Poisson distribution. The fraction of vertices satisfy-
ing equation (4) in a Gaussian distribution ∼0.0228. The
probability of the occurrence of two hubs will be the square
of this value since these two events are independent. We
will use these estimations for the Poisson distribution
where the actual reference value depends on the λ free
parameter which, in our case, corresponds to 〈k〉. Since
〈k〉 ≥ 1, we just have to verify whether the desired Poisson
values are below the Gaussian estimate. Indeed, the ex-
pected Gaussian value that corresponds to a high 〈k〉 is a
Poisson upper bound, which makes our statistics conser-
vative. We computed the number of hubs for the optimal
parameter values and S = 0.99. To avoid a small network

bias we have performed our calculation only for networks
with four or more nodes. If we include all elements of
the FNTVG, the probability of occurrence of one and two
hubs are, respectively, 0.41±0.143 and 0.109±0.083. These
results are indeed very high compared to the random esti-
mations 0.0228 and 0.00053, which make us conclude that
the presence of hubs among elements of our FNTVG is
not random-like.

5 Discussion and final remarks

This work follows the general approach of previous in-
vestigations that used concepts and tools from statisti-
cal physics and complex systems to characterize records
of brain activity. The approach based on fMRI measure-
ments [11] and the statistics of spike avalanches in MEA
records [41] provided sound evidences of collective behav-
ior of distant neurons in the brain. The framework devel-
oped herein, based on similar methods of the former, ad-
vanced in characterizing several aspects of brain activity
captured by the FNTVG elements: topology, hub struc-
ture, edge and degree distribution, minimum path fea-
tures. All of these measures can be interpreted in terms of
correlation among neuron activity in different brain areas.

It is important to recall that, although we concentrated
the detailed discussion on the results for the rat GE6, we
worked with recorded data of two further subjects (GE4
and GE5), as stated in the first paragraph of Section 2.
Despite the fact that the proportion of implanted elec-
trodes in the distinct areas of the brain varies for each
subject, we consistently obtained similar qualitative re-
sults for all data-sets. For all three subjects, we also con-
sidered sub-networks consisting only of nodes in each of
the three brain regions. The network features are also very
similar to those reported for the entire node set. However,
as the number of nodes is at most the half of the entire
set (<30), the results are subject to much larger fluctua-
tions. Nevertheless, our results indicate that the proposed
framework leads to similar properties, independently of
the specific neuron type.

Deciphering the meaning of correlation in neuron ac-
tivity is a major task in neuron sciences [30,31]. Correla-
tions among firing neurons can be easily evaluated, but it
is still difficult to identify a basic synchronization mecha-
nism. One of the current approaches considers that differ-
ent actions (movement, learning, thinking, etc.) may be
explained by simple models involving two or more groups
of neurons, but its validation is far from achieving con-
sensus [31]. Based on firing rates rather than on single
spikes, our analyzes lead to results of different nature com-
pared to those from individual neuron activity. They can
be used to detect neuronal ensemble activity of behav-
ioral significance [20] resulting from an assembly of neuron
states that last much longer than the typical firing time
scale.

The most important results refer to fairly clear fat
tails in Π(E) and the large number of hubs. All statis-
tical tests and several parameter variations confirmed the
existence of fat tails that converge to power law behav-
ior when S � 0.99. Unless we perform random shuffling
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that completely destroys correlations, all effects related to
changing parameter values in the FNTVG construction,
sub-sampling with non overlapping bins, bootstrap, or in-
clusion of silent states are not able to remove this signature
of long range correlation in the recorded signal. This sug-
gests that tails are not an artifact, and that they express
themselves only over a short interval as a consequence of
the experimental set-up that restricts the number of nodes
in the networks. As this power-law behavior can be seen
as a new complex time dependent pattern that emerges
from a critical behavior of a strong correlated system, we
call it an edge scale-free FNTVG. In addition, as the num-
ber of possible edges grows with the square of the num-
ber of nodes, we can search for power-law distributions
even if the number of recorded neurons in the FNTVG is
only ∼50.

The second quoted feature allowed for the identifi-
cation of a large number of hubs and for noticing that
the specific neurons playing this role dynamically changes
with time. This hint to a further specific feature of brain
operation: the place of hub is shared in a heterogeneous
way among the pool of recorded neurons. What remains
almost constant in the brain is not the actual function of
individual neurons, but aspects of the network structure
itself.

This may hint at a critical operating condition for the
brain and touches an interesting discussion in neurophys-
iology about the criticality of the senses. It has been ar-
gued that sensory systems that work at criticality should
optimize the amplification of the input signal as well as
enlarge the input signal range [42,43]. Recent works have
demonstrated the criticality in the statistics of neuronal
spikes [44,45], but current experimental limitation restrict
the number of recording neurons to ∼200 in these papers.
Although the main objective of this work is not to discuss
criticality in neurophysiology, our results hint positively
to the question of the existence of criticality in electro-
physiological neural data.

Finally, we stress that the FNTVG has a natural inter-
pretation in neurophysiology, which is interested in track-
ing the activity of an ensemble of neurons during learning,
behavioral tasks, or the sleep-wake cycle [44,46]. In this
way, it is well suited to be a mathematical tool of choice
for the investigation of brain activity extracted from a
neuronal population.
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